Скелетные мышцы человека

Рассмотрим подробнее тему: Скелетные мышцы человека - актуальные тенденции и тренды 2019 года.

0
81

Оглавление

Скелетные мышцы

  • Физиология
  • История физиологии
  • Методы физиологии

Скелетные мышцы: строение, свойства и функции

У человека различают три вида мышц: поперечнополосатые скелетные мышцы; поперечнополосатая сердечная мышца; гладкие мышцы внутренних органов, кожи, сосудов.

Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве.Кроме того, они выполняют защитную функцию, предохраняя внутренние органы от повреждений.

Скелетные мышцы являются активной частью опорно-двигательного аппарата, включающего также кости и их сочленения, связки, сухожилия.Масса мышц может достигать 50% общей массы тела.

С функциональной точки зрения к двигательному аппарату можно отнести и моторные нейроны, посылающие нервные импульсы к мышечным волокнам.Тела моторных нейронов, иннервирующих аксонами скелетную мускулатуру, располагаются в передних рогах спинного мозга, а иннервирующих мышцы челюстно-лицевой области — в моторных ядрах ствола мозга.Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне (рис.1).

Рис.1.Разветвления аксона моторного нейрона на аксонные терминалы.Электронограмма

Рис.Строение скелетной мышцы человека

Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки.Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, называют двигательной (или моторной) единицей.В глазных мышцах 1 двигательная единица может содержать 3-5 мышечных волокон, в мышцах туловища — сотни волокон, в камбаловидной мышце — 1500-2500 волокон.Мышечные волокна 1 двигательной единицы имеют одинаковые морфофункциональные свойства.

Функциями скелетных мышц являются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга, в том числе осуществление дыхательных движений, обеспечивающих вентиляцию легких;
  • поддержание положения и позы тела.

Скелетные мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве.Наряду с этим скелетные мышцы и скелет выполняют защитную функцию, предохраняя внутренние органы от повреждения.

Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.

Рис.2.Функции скелетных мышц

Физиологические свойства скелетных мышц

Скелетные мышцы обладают следующими физиологическими свойствами.

Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса.Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е0 около 90 мВ) возбудимость их ниже, чем нервных волокон (Е0 около 70 мВ).Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.

Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши.Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.

Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия.В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной.Скорость проведения потенциала действия составляет 3-5 м/с.

Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны.Сократимость обеспечивается специализированными сократительными белками мышечного волокна.

Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.

Рис.Скелетные мышцы человека

Физические свойства скелетных мышц

Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.

Растяжимость — способность мышцы изменять длину под действием растягивающей силы.

Эластичность — способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.

Сила мышц — способность мышцы поднимать груз.Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения.Сила скелетной мышцы зависит от многих факторов.Например, от числа двигательных единиц, возбуждаемых в данный момент времени.Также она зависит от синхронности работы двигательных единиц.Сила мышцы зависит и от исходной длины.Существует определенная средняя длина, при которой мышца развивает максимальное сокращение.

Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.

Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.

Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е.снижается высота подъема.Максимальная работа совершается мышцей при средних нагрузках.Это называется законом средних нагрузок.Величина мышечной работы зависит от числа мышечных волокон.Чем толще мышца, тем больший груз она может поднять.Длительное напряжение мышцы приводит к ее утомлению.Это обусловлено истощением энергетических запасов в мышце (АТФ, гликоген, глюкоза), накоплением молочной кислоты и других метаболитов.

Вспомогательные свойства скелетной мускулатуры

Растяжимость — это способность мышцы изменять свою длину под действием растягивающей ее силы.Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы.Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным.Это свойство очень важно для осуществления нормальных функций скелетных мышц.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять.Для сравнения силы различных мышц определяют их удельную силу, т.е.максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема.Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, так как снижается высота подъема груза.Следовательно, максимальная работа мышцей производится при средних величинах нагрузок.

Утомление мышц. Мышцы не могут работать беспрерывно.Длительная работа приводит к снижению их работоспособности.Временное понижение работоспособности мышцы, наступающее при длительной работе и исчезающее после отдыха, называется утомлением мышцы.Принято различать два вида утомления мышц: ложное и истинное.При ложном утомлении утомляется не мышца, а особый механизм передачи импульсов с нерва на мышцу, называемый синапсом.В синапсе истощаются резервы медиаторов.При истинном утомлении в мышце происходят следующие процессы: накопление недоокисленных продуктов распада питательных веществ вследствие недостаточного поступления кислорода, истощение запасов источников энергии, необходимой для мышечного сокращения.Утомление проявляется уменьшением силы сокращения мышцы и степени расслабления мышцы.Если мышца на некоторое время прекращает работу и находится в состоянии покоя, то восстанавливается работа синапса, а с кровью удаляются продукты обмена и доставляются питательные вещества.Таким образом, мышца вновь приобретает способность сокращаться и производить работу.

Одиночное сокращение

Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы.Различают три основные фазы такого сокращения: латентная фаза, фаза укорочения и фаза расслабления.

Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.е.подчиняется закону «все или ничего».Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении зависит от силы раздражения.При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно.С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает; сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение») — этот эффект называется лестницей Боудича.Дальнейшее усиление раздражающего тока на сокращение мышцы не влияет.

Рис.3.Одиночное сокращение мышцы: А — момент раздражения мышцы; а-6 — скрытый период; 6-в — сокращение (укорочение); в-г — расслабление; г-д — последовательные эластические колебания.

Тетанус мышцы

В естественных условиях к скелетной мышце из центральной нервной системы поступают не одиночные импульсы возбуждения, которые служат для нее адекватными раздражителями, а серии импульсов, на которые мышца отвечает длительным сокращением.Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения, или тетануса.Различают два вида тетануса: зубчатый и гладкий (рис.4).

Гладкий тетанус возникает, когда каждый последующий импульс возбуждения поступает в фазу укорочения, а зубчатый — в фазу расслабления.

Амплитуда тетанического сокращения превышает амплитуду одиночного сокращения.Академик Н.Е.Введенский обосновал изменчивость амплитуды тетануса неодинаковой величиной возбудимости мышцы и ввел в физиологию понятия оптимума и пессимума частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение поступает в фазу повышенной возбудимости мышцы.При этом развивается тетанус максимальной величины (оптимальный).

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости мышцы.Величина тетануса при этом будет минимальной (пессимальной).

Рис.4.Сокращение скелетной мышцы при разной частоте раздражения: I — сокращение мышцы; II — отметка частоты раздражения; а — одиночные сокращения; б — зубчатый тетанус; в — гладкий тетанус

Режимы мышечных сокращений

Для скелетных мышц характерны изотонический, изометрический и смешанный режимы сокращения.

При изотоническом сокращении мышцы изменяется ее длина, а напряжение остается постоянным.Такое сокращение происходит в том случае, когда мышца не преодолевает сопротивления (например, не перемещает груз).В естественных условиях близкими к изотоническому типу сокращениями являются сокращения мышц языка.

При изометрическом сокращении в мышце во время ее активности нарастает напряжение, но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается.Длина мышечных волокон остается постоянной, меняется лишь степень их напряжения.

Гладкие мышцы сокращаются по аналогичным механизмам.

В организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими.Они всегда имеют смешанный характер, т.е.происходит одновременное изменение и длины, и напряжения мышцы.Такой режим сокращения называется ауксотоническим, если преобладает напряжение мышцы, или ауксометрическим, если преобладает укорочение.

Скелетные мышцы.Группы скелетных мышц.Строение и функции скелетных мышц

Мышцы – одна из основных составляющих тела.Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде.

Мышцы располагаются в каждой части нашего тела.И даже если мы не знаем об их существовании, они все равно есть.Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой – на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались.

Они отвечают не только за движение.В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе.Это необходимо для того, чтобы в любой момент определенная часть тела смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку.

Чтобы понять, как устроены мышцы, предлагаем вспомнить основы, повторить классификацию и заглянуть в клеточное строение мышц.Также мы узнаем о болезнях, которые могут ухудшить их работу, и о том, как укрепить скелетную мускулатуру.

Общие понятия

По своему наполнению и происходящим реакциям мышечные волокна делятся на:

Скелетные мышцы – продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен.Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета.Сокращения поперечно-полосатых мышц способствуют движениям человека.

Разновидности форм

Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться.

Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы.Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях.

В организме человека насчитывается более 600 мышц.В процентном соотношении их общая масса составляет 40% от общей массы тела.Мышцы классифицируются по форме и строению:

  • толстые веретенообразные;
  • тонкие пластинчатые.

Классификация упрощает изучение

Деление скелетных мышц на группы осуществляется в зависимости от места нахождения и значения их в деятельности различных органов тела.Основные группы:

Мышцы головы и шеи:

  • мимические – задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица;
  • жевательные – способствуют смене положения челюстно-лицевого отдела;
  • произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха).

Группы скелетных мышц шейного отдела:

  • поверхностные – способствуют наклонным и вращательным движениям головы;
  • средние – создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, подъязычной кости и гортанных хрящей;
  • глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Мышцы, фото которых вы видите здесь, отвечают за туловище и делятся на мышечные пучки следующих отделов:

  • грудной – приводит в действие верхнюю часть торса и руки, а также способствует изменению положения ребер при дыхании;
  • отдел живота – дает движение крови по венам, осуществляет изменения положения грудной клетки при дыхании, воздействует на функционирование кишечного тракта, способствует сгибанию туловища;
  • спинной – создает двигательную систему верхних конечностей.
  • верхние – состоят из мышечных тканей плечевого пояса и свободной верхней конечности, помогают двигать рукой в плечевой суставной сумке и создают движения запястья и пальцев;
  • нижние – играют основную роль при передвижении человека в пространстве, подразделяются на мышцы тазового пояса и свободную часть.

Строение скелетной мышцы

В своей структуре она имеет огромное количество мышечных волокон продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см.Волокна (микрофибриллы) бывают тонкими – актиновые, и толстыми – миозиновые.

Первые состоят из белка, имеющего фибриллярную структуру.Он называется актин.Толстые волокна состоят из различных типов миозина.Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений.

Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении.

Строение скелетной мышцы похоже на сплетенный из волокон канат или многожильный провод.Сверху ее окружает тонкий чехол из соединительной ткани, называемый эпимизиум.От его внутренней поверхности вглубь мышцы отходят более тонкие разветвления соединительной ткани, создающие перегородки.В них «завернуты» отдельные пучки мышечной ткани, которые содержат до 100 фибрилл в каждом.От них еще глубже отходят более узкие ответвления.

Сквозь все слои в скелетные мышцы проникают кровеносная и нервная системы.Артериальная вена проходит вдоль перимизиума – это соединительная ткань, покрывающая пучки мышечных волокон.Артериальные и венозные капилляры располагаются рядом.

Процесс развития

Скелетные мышцы развиваются из мезодермы.Со стороны нервного желобка образуются сомиты.По истечении времени в них выделяются миотомы.Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся.Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются.Благодаря слиянию клеток создаются симпласты.К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Функции скелетных мышц

Эта мускулатура является основой опорно-двигательного аппарата.Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму.О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура.

Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом.

Мышцы выполняют следующие функции:

  • создают подвижность тела;
  • берегут тепловую энергию, созданную внутри тела;
  • способствуют перемещению и вертикальному удержанию в пространстве;
  • содействуют сокращению дыхательных путей и помогают при глотании;
  • формируют мимику;
  • способствуют выработке тепла.

Постоянная поддержка

Когда мышечная ткань находится в покое, в ней всегда остается незначительное напряжение, называемое мышечным тонусом.Оно образуется из-за незначительных импульсных частот, которые поступают в мышцы из спинного мозга.Их действие обуславливается сигналами, проникающими из головы к спинным мотонейронам.Тонус мышц также зависит от их общего состояния:

  • растяжения;
  • уровня наполняемости мышечных футляров;
  • обогащения кровью;
  • общего водного и солевого баланса.

Человек обладает способностью регулировать уровень нагрузки мышц.В результате длительных физических упражнений либо сильного эмоционального и нервного перенапряжения тонус мышц непроизвольно увеличивается.

Сокращения скелетных мышц и их разновидности

Эта функция является основной.Но даже она, при кажущейся простоте, может делиться на несколько видов.

Виды сократительных мышц:

  • изотонические – способность мышечной ткани укорачиваться без изменений мышечных волокон;
  • изометрические – при реакции волокно сокращается, но его длина остается прежней;
  • ауксотонические – процесс сокращения мышечной ткани, где длина и напряжение мышц подвергнута изменениям.

Рассмотрим этот процесс более подробно

Сначала мозг посылает через систему нейронов импульс, которых доходит до мотонейрона, примыкающего к мышечному пучку.Далее эфферентный нейрон иннервируется из синоптического пузырька, и выделяется нейромедиатор.Он соединяется с рецепторами на сарколемме мышечного волокна и открывает натриевый канал, который приводит к деполяризации мембраны, вызывающей потенциал действия.При достаточном количестве нейромедиатор стимулирует выработку ионов кальция.Затем он соединяется с тропонином и стимулирует его сокращение.Тот, в свою очередь, оттягивает тропомеазин, позволяя актину соединиться с миозином.

Дальше начинается процесс скольжения актинового филамента относительно миозинового, вследствие чего происходит сокращение скелетных мышц.Разобраться в процессе сжатия поперечно-полосатых мышечных пучков поможет схематическое изображение.

Принцип работы скелетных мышц

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата.При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты.Они способствуют противодействию и придают движению конкретность и грациозность.

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу.Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят.Например, некоторые из пучков выступают рычагом для работы костей скелета.

Работа мышц на клеточном уровне

Действие скелетной мускулатуры осуществляется за счет двух белков: актина и миозина.Эти составляющие обладают способностью передвигаться относительно друг друга.

Для осуществления работоспособности мышечной ткани необходим расход энергии, заключенной в химических связях органических соединений.Распад и окисление таких веществ происходят в мышцах.Здесь обязательно присутствует воздух, и выделяется энергия, 33% из всего этого расходуется на работоспособность мышечной ткани, а 67% передается другим тканям и тратится на поддержание постоянной температуры тела.

Болезни мускулатуры скелета

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги – нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания – непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • Мышечная дистрофия характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения – хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Релаксация и восстановление скелетных мышц

Правильное питание, образ жизни и регулярные тренировки помогут вам стать обладателем здоровых и красивых скелетных мышц.Необязательно заниматься тяжелой атлетикой и наращивать мышечную массу.Достаточно регулярных кардиотренировок и занятий йогой.

Не стоит забывать про обязательный прием необходимых витаминов и минералов, а также регулярные посещения саун и бань с вениками, которые позволяют обогатить кислородом мышечную ткань и кровеносные сосуды.

Систематические расслабляющие массажи повысят эластичность и репродуктивность мышечных пучков.Также положительное воздействие на структуру и функционирование скелетных мышц оказывает посещение криосауны.

Строение мышц человека.Строение скелетных мышц

Мышцы человека по отношению к его общей массе составляют примерно 40%.Основной их функцией в организме является обеспечение движения за счет способности сокращаться и расслабляться.Впервые строение мышц (8 класс) начинает изучаться в школе.Там знания даются на общем уровне, без особого углубления.Статья будет интересна тем, кто желает немного выйти за эти рамки.

Строение мышц: общие сведения

Мышечная ткань представляет собой группу, объединяющую поперечно-полосатую, гладкую и сердечную разновидности.Различающиеся по происхождению и строению, они объединены по признаку выполняемой функции, то есть способности сокращаться и удлиняться.Кроме перечисленных разновидностей, которые формируются из мезенхимы (мезодермы), в человеческом организме есть еще и мышечная ткань, имеющая эктодермальное происхождение.Это миоциты радужки глаз.

Структурное, общее строение мышц таково: они состоят из активной части, называемой брюшком, и сухожильных концов (сухожилия).Последние образованы из плотной соединительной ткани и выполняют функцию прикрепления.Они отличаются характерным беловато-желтым цветом и блеском.К тому же, обладают значительной крепостью.Обычно своими сухожилиями мышцы прикрепляются к звеньям скелета, соединение с которыми подвижно.Однако некоторые могут крепиться и к фасциям, к различным органам (глазное яблоко, хрящ гортани и т.д.), к коже (на лице).Кровоснабжение мышц различается и зависит от испытываемых ими нагрузок.

Регулирование работы мышц

Контроль над их работой осуществляется, как и у других органов, нервной системой.Рецепторами или эффекторами оканчиваются ее волокна в мышцах.Первые располагаются также и в сухожилиях, имеют вид концевых разветвлений чувствительного нерва или нервно-мышечного веретена, обладающего сложным устройством.Они реагируют на степень сокращения и растяжения, вследствие чего у человека появляется определенное чувство, которое, в частности, помогает определить положение тела в пространстве.Эффекторные нервные окончания (второе название — моторные бляшки) принадлежат двигательному нерву.

Строение мышц характеризуется также наличием в них окончаний волокон симпатической нервной системы (вегетативной).

Строение поперечно-полосатой мышечной ткани

Ее часто называют скелетной или исчерченной.Строение скелетной мышцы достаточно непростое.Она образована волокнами, имеющими цилиндрическую форму, длиной от 1 мм до 4 см и более, толщиной 0,1 мм.Причем каждое представляет собой особый комплекс, состоящий из миосателлитоцитов и миосимпласта, покрытых плазматической мембраной, называемой сарколеммой.Снаружи к ней прилегает базальная мембрана (пластинка), образованная из тончайших коллагеновых и ретикулярных волокон.Миосимпласт состоит из большого количества ядер эллипсоидной формы, миофибрилл и цитоплазмы.

Строение мышц данного типа отличается хорошо развитой саркотубулярной сетью, образованной из двух компонентов: канальцев ЭПС и Т-трубочек.Последние играют важную роль в ускорении проведения потенциала действия к микрофибриллам.Миосателлитоциты находятся непосредственно над сарколеммой.Клетки имеют уплощенную форму и крупное ядро, богатое хроматином, а также центросому и небольшое число органелл, миофибриллы отсутствуют.

Саркоплазма скелетной мышцы богата особым белком – миоглобином, который, как и гемоглобин, имеет способность связываться с кислородом.В зависимости от его содержания, наличия/отсутствия миофибрилл и толщины волокон различают два вида поперечно-полосатых мышц.Специфическое строение скелета, мышцы — все это элементы приспособления человека к прямохождению, их главные функции — опора и движение.

Красные мышечные волокна

Они обладают темным цветом, богаты миоглобином, саркоплазмой и митохондриями.Однако содержат мало миофибрилл.Эти волокна сокращаются достаточно медленно и могут долго пребывать в таком состоянии (иначе говоря, в рабочем).Строение скелетной мышцы и выполняемые ею функции стоит рассматривать как части единого целого, взаимно обуславливающие друг друга.

Белые мышечные волокна

Они отличаются светлым цветом, содержат гораздо меньшее количество саркоплазмы, митохондрий и миоглобина, но зато характеризуются высоким содержанием миофибрилл.Это обуславливает то, что они сокращаются гораздо интенсивнее, чем красные, но и «устают» тоже быстро.

Строение мышц человека отличается тем, что в организме имеется и тот, и другой вид.Такая совокупность волокон обуславливает быстроту реакции мышц (сокращение) и их продолжительную работоспособность.

Гладкая мышечная ткань (неисчерченная): строение

Она построена из миоцитов, дислоцирующихся в стенках лимфатических, кровеносных сосудов и образующих сократительный аппарат во внутренних полых органах.Это удлиненные клетки, имеющие веретенообразную форму, без поперечной исчерченности.Их расположение – групповое.Каждый миоцит окружает базальная мембрана, коллагеновые и ретикулярные волокна, среди которых находятся эластические.Между собой клетки связывают многочисленные нексусы.Особенности строения мышц данной группы заключаются в том, что к каждому миоциту, окруженному соединительной тканью, подходит одно нервное волокно (например, сфинктер зрачка), а импульс транспортируется от одной клетки к другой с помощью нексусов.Скорость его движения — 8-10 см/с.

У гладких миоцитов скорость сокращения гораздо меньше, чем у миоцитов исчерченной мышечной ткани.Зато и энергия расходуется экономно.Такое строение позволяет им совершать длительные сокращения тонического характера (например, сфинктеры кровеносных сосудов, полых, трубчатых органов) и достаточно медленные движения, которые зачастую бывают ритмичны.

Сердечная мышечная ткань: особенности

По классификации она принадлежит к поперечно-полосатой, но строение и функции мышц сердца заметно отличаются от скелетных.Сердечная мышечная ткань состоит из кардиомиоцитов, которые образуют комплексы, соединяясь друг с другом.Сокращение сердечной мышцы не подвластно контролю со стороны сознания человека.Кардиомиоциты представляют собой клетки, имеющие неправильную цилиндрическую форму, с 1-2 ядрами, большим количеством крупных митохондрий.Между собой они соединены вставочными дисками.Это особая зона, которая включает цитолемму, области прикрепления миофибрилл к ней, десмосы, нексусы (через них происходит передача нервного возбуждения и ионный обмен между клетками).

Классификация мышц в зависимости от формы и величины

1.Длинные и короткие.Первые встречаются там, где наиболее большой размах при движении.Например, верхние и нижние конечности.А короткие мышцы, в частности, расположены между отдельными позвонками.

2.Широкие мышцы (на фото — желудок).Они в основном располагаются на туловище, в полостных стенках тела.Например, поверхностные мышцы спины, груди, живота.При многослойном расположении их волокна, как правило, идут в разных направлениях.Поэтому они обеспечивают не только большое многообразие движений, но и укрепляют стенки полостей тела.У широких мышц сухожилия имеют плоскую форму и занимают большую поверхность, их называют растяжениями или апоневрозами.

3.Круговые мышцы.Они находятся вокруг отверстий тела и своими сокращениями суживают их, в результате чего получили название «сфинктеры».Например, круговая мышца рта.

Сложные мышцы: особенности строения

Их названия соответствуют их структуре: двух-, трех — (на фото) и четырехглавые.Строение мышц данного вида отличается тем, что их начало бывает не единым, а разделенным на 2, 3 или 4 части (головки) соответственно.Начинаясь от разных точек кости, они затем сдвигаются и объединяются в общее брюшко.Оно тоже может быть поделено промежуточным сухожилием поперек.Такая мышца называется двубрюшной.Направление волокон может быть параллельным оси либо находиться к ней под острым углом.В первом случае, наиболее распространенном, мышца достаточно сильно укорачивается при сокращении, обеспечивая тем самым большой размах при движениях.А во втором – волокна короткие, расположены под углом, но их гораздо больше по количеству.Поэтому мышца укорачивается незначительно при сокращении.Ее главное преимущество заключается в том, что она развивает при этом большую силу.В случае если волокна подходят к сухожилию только с одной стороны, мышца имеет название одноперистой, если с двух – двуперистой.

Вспомогательные аппараты мышц

Строение мышц человека уникально и имеет свои особенности.Так, например, под влиянием их работы из окружающей соединительной ткани образуются вспомогательные аппараты.Всего их четыре.

1.Фасции, которые есть не что иное, как оболочки из плотной, волокнистой фиброзной ткани (соединительной).Они покрывают как одиночные мышцы, так и целые группы, а также некоторые другие органы.К примеру, почки, сосудисто-нервные пучки и т.д.Они влияют на направление тяги во время сокращения и не допускают смещения мышц в стороны.Плотность и прочность фасций зависит от их расположения (в различных частях тела они отличаются).

2.Синовиальные сумки (на фото).Об их роли и строении многие, пожалуй, помнят еще со школьных уроков (Биология, 8 класс: «Строение мышц»).Они представляют собой своеобразные мешки, стенки которых образованы соединительной тканью и достаточно тонкие.Внутри заполнены жидкостью типа синовии.Как правило, образуются они там, где сухожилия соприкасаются между собой либо испытывают большое трение о кость при сокращении мышцы, а также в местах трения об нее кожного покрова (например, локти).Благодаря синовиальной жидкости улучшается и облегчается скольжение.Развиваются они в основном после рождения, и с годами полость увеличивается.

3.Синовиальные влагалища.Их развитие происходит внутри костно-фиброзных или фиброзных каналов, которыми сухожилия длинных мышц окружены в местах скольжения по кости.В строении синовиального влагалища различают два лепестка: внутренний, покрывающий со всех сторон сухожилие, и наружный, выстилающий стенки фиброзного канала.Они препятствуют трению сухожилий о кость.

4.Сесамовидные кости.Как правило, они окостеневают внутри связок или сухожилий, укрепляя их.Это облегчает работу мышцы за счет увеличения плеча приложения силы.

Анатомия человека

Нервная система человека.Классификация, органы и функции

Благодаря слаженной работе нервной системы человек может подстраиваться под факторы внешнего мира: любое, даже незначительное, изменение в окружающей среде заставляет нервные клетки передавать сотни импульсов с невероятно высокой скоростью, чтобы организм мог моментально адаптироваться к новым для себя условиям.

Лимфатическая система человека

Лимфатическая система — одна из самых сложных и одновременно важных составляющих организма человека.Именно от неё напрямую зависит безопасность и здоровье, ведь лимфатическая система первой встречает патогенные микроорганизмы и даёт им отпор.При правильной работе такой «фильтр» способен противостоять бактериям, вирусам и прочим чужеродным негативным факторам, которые подрывают здоровье человека.

Анатомия стопы

Человек в процессе эволюции встал на ноги и превратился в прямоходящее существо.В природе существует множество конечностей для ходьбы и бега по суше, поэтому различают хождение на стопе, на пальцах (лапах) и фалангах (копытах).

Эндокринная система человека

Эндокринная система представляет собой ряд желёз, расположенных на различном отдалении от головного мозга.Гормональное воздействие осуществляется по принципу каскада: вышестоящие железы действуют на нижестоящие железы и системы активирующе, а нижестоящие — напротив, действуют на вышестоящие тормозяще.

Дыхательная система человека

Сложно переоценить значимость кислорода для организма человека.Ребёнок ещё в утробе матери не сможет полноценно развиваться при недостатке этого вещества, которое поступает через материнскую кровеносную систему.И при появлении на свет кроха издаёт крик, совершая первые дыхательные движения, которые не прекращаются в течение всей жизни.

Пищеварительная система человека: строение, органы и функции

Одним из наиболее значимых составляющих жизнедеятельности человека является пищеварение, ведь именно в ходе этого процесса в организм поступают необходимые белки, жиры, углеводы, витамины, минеральные вещества и прочие полезные ингредиенты — своеобразные «кирпичики», на которых базируются все физиологические реакции.

Анатомия спины

Человек, как прямоходящее существо, имеет особо развитый мышечный корсет в области спины.Спинные мышцы не только держат вертикальное положение тела, но и обеспечивают правильные изгибы позвоночника, защищают его от внешних повреждений и перегрузок, а также помогают удержать равновесие при различных позах.

Анатомия тазобедренного сустава

Тазобедренный сустав человека образуют две кости, поверхности которых в идеале совпадают, словно кусочки паззла.Вертлужная впадина на поверхности подвздошной кости играет роль своеобразной лузы, в которую погружается шарообразный отросток бедренной кости — головка, полностью покрытая прочным и эластичным хрящиком.Такой комплекс напоминает шарнир, вращение которого достигается за счёт гармоничного совпадения размеров и форм примыкающих костно-хрящевых структур.

Анатомия кисти

Анатомия кисти руки человека довольно сложна.Поскольку это очень подвижная часть тела, в ней множество костей и суставов, связок и мышц, также человеческие пальцы, в отличие от конечностей животных, имеют ногти.Кожа рук также отличается от кожного покрова тела, имея специфические складки и особую чувствительность.

Коленный сустав: анатомия и физиология

Колено является крупнейшим и, пожалуй, одним из самых сложных суставов человеческого организма.С одной стороны, оно должно обеспечивать сгибание и разгибание ноги, её подвижность, причём во всех направлениях, поддерживать координацию и правильное положение тела в пространстве.

Кости и их соединения

Способность к передвижению является очень важной функцией человеческого тела.Благодаря эволюционному процессу, первоначальные простейшие формы движения за счёт двигательных белков в составе ресничек и жгутиков у микроорганизмов были развиты до сложных механизмов, которые мы можем наблюдать у высших животных.Двигательный аппарат, или костно-мышечная система, представлен пассивным компонентом, костями, и активным — мышцами.

Анатомия позвоночника человека

Трудно переоценить роль позвоночника в строении и функционировании всего тела.От того, насколько он здоров, зависит состояние всех остальных органов и систем, так как наш позвоночник не только позволяет нам нормально двигаться и держать осанку, но и является основным каналом сообщения всех органов тела с головным мозгом.

Найти в этом разделе

Анатомия человеческого тела: внутренний мир с точки зрения науки

Организм человека — сложная и многогранная система, каждая клетка, каждая молекула которой тесно взаимосвязана с другими.Находясь в гармонии друг с другом, они способны обеспечивать единство, которое, в свою очередь, проявляется в здоровье и долголетии, однако при малейшем сбое вся система может рухнуть в один миг.Как устроен этот сложный механизм? Благодаря чему поддерживается его полноценная работа и как предотвратить дисбаланс слаженной и в то же время чувствительной к внешнему воздействию системы? Эти и другие вопросы раскрывает анатомия человека.

Основы анатомии: науки о человеке

Анатомия — это наука, повествующая о внешнем и внутреннем устройстве организма в нормальном состоянии и при наличии всевозможных отклонений.Для удобства восприятия строение человека анатомия рассматривает в нескольких плоскостях, начиная с маленьких «песчинок» и заканчивая крупными «кирпичиками», составляющими единое целое.Такой подход позволяет выделить несколько уровней изучения организма:

  • молекулярный и атомный,
  • клеточный,
  • тканевой,
  • органный,
  • системный.

Молекулярный и клеточный уровни живого организма

Начальный этап изучения анатомии тела человека рассматривает организм как комплекс ионов, атомов и молекул.Как и большинство живых существ, человек образован всевозможными химическими соединениями, основу которых составляют углерод, водород, азот, кислород, кальций, натрий и другие микро — и макроэлементы.Именно эти вещества поодиночке и в комплексе служат основой молекул веществ, входящих в клеточный состав человеческого тела.

В зависимости от особенностей формы, размеров и выполняемых функций выделяют различные виды клеток.Так или иначе, каждая из них имеет схожее строение, присущее для эукариотов — наличие ядра и различных молекулярных компонентов.Липиды, белки, углеводы, вода, соли, нуклеиновые кислоты и т.д.вступают в реакции друг с другом, обеспечивая тем самым выполнение возложенных на них функций.

Строение человека: анатомия тканей и органов

Сходные по строению и функциям клетки в комплексе с межклеточным веществом образуют ткани, каждая из которых выполняет ряд определённых задач.В зависимости от этого в анатомии тела человека выделяют 4 группы тканей:

  • Эпителиальная ткань отличается плотной структурой и малым количеством межклеточного вещества.Такое строение позволяет ей отлично справляться с защитой организма от внешнего воздействия и всасыванием полезных веществ извне.Впрочем, эпителий присутствует не только во внешней оболочке организма, но и во внутренних органах, например, железах.Они быстро восстанавливаются практически без постороннего вмешательства, а потому считаются наиболее универсальными и прочными.
  • Соединительные ткани могут быть очень разнообразны.Они отличаются большим процентом межклеточного вещества, которое может быть любой структуры и плотности.В зависимости от этого варьируют и функции, возложенные на соединительные ткани, — они могут служить опорой, защитой и транспортом питательных веществ для остальных тканей и клеток организма.
  • Особенностью мышечной ткани является умение изменять свои размеры, то есть сокращаться и расслабляться.Благодаря этому она отлично справляется с координацией тела — перемещением как отдельных частей, так и целого организма в пространстве.
  • Нервная ткань — самая сложная и функциональная.Её клетки управляют большинством процессов, протекающих внутри других органов и систем, однако при этом не могут существовать самостоятельно.Всю нервную ткань условно можно разделить на 2 вида: нейроны и глии.Первые обеспечивают передачу импульсов по всему организму, а вторые оберегают и питают их.

Комплекс тканей, локализованный в определённой части организма, имеющий чёткую форму и выполняющий общую функцию, является самостоятельным органом.Как правило, орган представлен различными типами клеток, однако, какой-то определённый вид ткани всегда преобладает, а остальные носят, скорее, вспомогательный характер.

В анатомии человека органы принято условно классифицировать на наружные и внутренние.Наружное, или внешнее, строение человеческого тела можно увидеть и изучить без каких-либо специальных приборов или манипуляций, поскольку все части видны невооружённым глазом.К ним относятся голова, шея, спина, грудь, туловище, верхние и нижние конечности.В свою очередь, анатомия внутренних органов более сложна, поскольку для её изучения требуется инвазивное вмешательство, современные научно-медицинские приспособления или как минимум наглядный дидактический материал.Внутреннее строение представлено органами, находящимися внутри тела человека, — почками, печенью, желудком, кишечником, головным мозгом и т.д.

Системы органов в анатомии человека

Несмотря на то, что каждый орган выполняет какую-то определённую функцию, существовать по-отдельности они не могут — для нормальной жизнедеятельности необходима комплексная работа, поддерживающая функциональность целого организма.Именно поэтому анатомия органов не является самой высокой ступенью изучения тела человека — гораздо удобнее рассматривать устройство организма с системной точки зрения.Взаимодействуя друг с другом, каждая система обеспечивает работоспособность организма в целом.

В анатомии принято выделять 12 систем организма:

  • опорно-двигательный аппарат,
  • покровная система,
  • кроветворение,
  • сердечно-сосудистый комплекс,
  • пищеварение,
  • нервная система,
  • лимфатическая система,
  • иммунная,
  • органы чувств,
  • мочеполовой комплекс,
  • эндокринная система,
  • дыхание.

Чтобы детально изучить строение человека, рассмотрим каждую из систем органов более подробно.Краткий экскурс в основу анатомии человеческого тела поможет сориентироваться в том, от чего зависит полноценная работа организма в целом, как взаимодействуют ткани, органы и системы и каким образом сохранить здоровье.

Анатомия органов опорно-двигательной системы

Опорно-двигательный аппарат представляет собой каркас, который позволяет человеку свободно перемещаться в пространстве и поддерживает объёмную форму тела.Система включает скелет и мышечные волокна, которые тесно взаимодействуют друг с другом.Скелет определяет размеры и форму человека и формирует определённые полости, в которых помещены внутренние органы.В зависимости от возраста количество костей в скелетной системе варьирует в пределах выше 200 (у новорождённого 270, у взрослого 205–207), часть из которых выполняют функцию рычагов, а остальные остаются неподвижными, защищая органы от внешних повреждений.Кроме того, костные ткани участвуют в обмене микроэлементов, в частности, фосфора и кальция.

Анатомически скелет состоит из 6 ключевых отделов: пояса верхних и нижних конечностей плюс сами конечности, позвоночный столб и череп.В зависимости от выполняемых функций состав костей включает неорганические и органические вещества в разных пропорциях.Более прочные кости преимущественно состоят из минеральных солей, эластичные — из коллагеновых волокон.Наружный слой костей представлен очень плотной надкостницей, которая не только защищает костную ткань, но и обеспечивает ей необходимое для роста питание — именно из неё в микроскопические канальцы внутренней структуры кости проникают сосуды и нервы.

Соединительными элементами между отдельными костями служат суставы — своеобразные амортизаторы, которые позволяют изменять положение частей тела относительно друг друга.Впрочем, соединения между костными структурами могут быть не только подвижными: полуподвижные сочленения обеспечиваются хрящами различной плотности, а полностью неподвижные — костными швами в местах срастания.

Мышечная система приводит в действие весь этот сложный механизм, а также обеспечивает работу всех внутренних органов благодаря контролируемым и своевременным сокращениям.Скелетные мышечные волокна прилегают непосредственно к костям и отвечают за подвижность тела, гладкие служат основой сосудов и внутренних органов, а сердечные регулирует работу сердца, обеспечивая полноценный кровоток, а значит, жизнеспособность человека.

Поверхностная анатомия человеческого тела: покровная система

Наружное строение человека представлено кожей или, как её принято называть в биологии, дермой, и слизистыми оболочками.Несмотря на кажущуюся незначительность, эти органы играют важнейшую роль в обеспечении нормальной жизнедеятельности: вкупе со слизистыми кожа является огромной рецепторной площадкой, благодаря которой человек может тактильно ощущать различные формы воздействия, как приятные, так и опасные для здоровья.

Покровная система выполняет не только рецепторную функцию — её ткани способны защищать организм от разрушающего внешнего воздействия, выводить через микропоры токсичные и ядовитые вещества и регулировать колебания температуры тела.Составляя порядка 15 % от общей массы тела, она является важнейшей пограничной оболочкой, регулирующей взаимодействие человеческого тела и окружающей среды.

Система кроветворения в анатомии тела человека

Кроветворение является одним из основных процессов, поддерживающих жизнь внутри организма.Как биологическая жидкость кровь присутствует в 99 % всех органов, обеспечивая их полноценное питание, а значит, и функциональность.Вкупе органы кровеносной системы отвечают за образование форменных элементов крови: эритроцитов, лейкоцитов, лимфоцитов и тромбоцитов, которые служат своеобразным зеркалом, отражающим состояние организма.Именно с общего анализа крови начинается диагностика абсолютного большинства заболеваний — функциональность органов кроветворения, а значит, и состав крови чувствительно реагирует на любое изменение внутри организма, начиная с банального инфекционного или простудного заболевания и заканчивая опасными патологиями.Такая особенность позволяет оперативно приспособиться к новым условиям и быстрее восстановиться, подключив иммунитет и другие резервные возможности организма.

Все выполняемые функции чётко разделены между органами, составляющими кроветворный комплекс:

  • лимфатические узлы гарантируют поставку плазматических клеток,
  • костный мозг формирует стволовые клетки, которые позднее трансформируются в форменные элементы,
  • периферические сосудистые системы служат для транспортировки биологической жидкости к другим органам,
  • селезёнка фильтрует кровь от омертвевших клеток.

Всё это в комплексе является сложным саморегулируемым механизмом, малейший сбой в котором чреват серьёзными патологиями, затрагивающими любую из систем организма.

Сердечно-сосудистый комплекс

Система, включающая сердце и все сосуды, начиная с самых крупных и заканчивая микроскопическими капиллярами диаметром в несколько микрон, обеспечивает циркуляцию крови внутри организма, питая, насыщая кислородом, витаминами и микроэлементами и очищая от продуктов распада каждую клеточку человеческого тела.Эту гигантскую по площади сложнейшую сеть нагляднее всего демонстрирует анатомия человека в картинках и схемах, поскольку теоретически разобраться, как и куда ведёт каждый конкретный сосуд, практически нереально — их количество в организме взрослого достигает 40 млрд и более.Тем не менее, вся эта сеть является сбалансированной замкнутой системой, организованной в 2 круга кровообращения: большой и малый.

В зависимости от объёма и выполняемых функций сосуды можно классифицировать следующим образом:

  1. Артерии — крупные трубчатые полости с плотными стенками, которые состоят из мышечных, коллагеновых и эластиновых волокон.По этим сосудам насыщенная молекулами кислорода кровь разносится от сердца к многочисленным органам, обеспечивая их полноценное питание.Единственным исключением является лёгочная артерия, по которой, в отличие от остальных, кровь движется к сердцу.
  2. Артериолы — более мелкие артерии, способные менять величину просвета.Они служат связующим звеном между объёмными артериями и мелкой капиллярной сетью.
  3. Капилляры — самые маленькие сосудики диаметром не более 11 мкм, сквозь стенки которых из крови в близлежащие ткани просачиваются молекулы питательных веществ.
  4. Анастомозы — артериоло-венулярные сосуды, обеспечивающие переход из артериол в венулу в обход сети капилляров.
  5. Венулы — такие же мелкие, как и капилляры, сосуды, которые обеспечивают отток крови, лишённой кислорода и полезных частиц.
  6. Вены — более крупные по сравнению с венулами сосуды, по которым обеднённая кровь с продуктами распада движется к сердцу.

«Двигателем» столь крупной замкнутой сети является сердце — полый мышечный орган, благодаря ритмичным сокращениям которого кровь продвигается по сосудистой сетке.При нормальной работе каждую минуту сердце перекачивает не менее 6 литров крови, а за день — примерно 8 тысяч литров.Неудивительно, что сердечные заболевания являются одними из самых серьёзных и распространённых, — с возрастом этот биологический насос изнашивается, поэтому необходимо тщательно отслеживать любые изменения в его работе.

Анатомия человека: органы пищеварительной системы

Пищеварение является сложным многоступенчатым процессом, в ходе которого поступившая в организм пища расщепляется на молекулы, переваривается и транспортируется к тканям и органам.Весь этот процесс начинается в ротовой полости, куда, собственно, и поступают питательные элементы в составе блюд, включённых в суточный рацион.Там крупные куски пищи подвергаются измельчению, после чего перемещаются в глотку и пищевод.

Желудок — полый мышечный орган в брюшной полости, является одним из ключевых звеньев пищеварительной цепочки.Несмотря на то, что переваривание начинается ещё в ротовой полости, основные процессы протекают именно в желудке — здесь часть веществ сразу всасывается в кровоток, а часть подвергается дальнейшему расщеплению под воздействием желудочного сока.Основные процессы протекают под воздействием соляной кислоты и ферментов, а слизь служит своего рода амортизатором для дальнейшей транспортировки пищевой массы в кишечник.

В кишечнике желудочное пищеварение сменяется кишечным.Поступающая из протока желчь нейтрализует действие желудочного сока и эмульгирует жиры, повышая их соприкосновение с ферментами.Далее, на протяжении всей длины кишечника, оставшаяся непереваренной масса расщепляется на молекулы и всасывается в кровоток через кишечную стенку, а всё, что остаётся невостребованным, выводится с каловыми массами.

Помимо основных органов, отвечающих за транспортировку и расщепление нутриентов, к пищеварительной системе относятся:

  • Слюнные железы, язык — отвечают за подготовку пищевого комка к расщеплению.
  • Печень — самая крупная в организме железа, которая регулирует синтез желчи.
  • Поджелудочная железа — орган, необходимый для выработки ферментов и гормонов, принимающих участие в метаболизме.

Значение нервной системы в анатомии тела

Комплекс, объединённый нервной системой, служит своего рода центром управления всеми процессами организма.Именно здесь регулируется работа тела человека, его способность воспринимать и реагировать на любой внешний раздражитель.Руководствуясь функциями и локализацией конкретных органов нервной системы, в анатомии тела принято выделять несколько классификаций:

Центральная и периферическая нервные системы

ЦНС, или центральная нервная система, — это комплекс веществ головного и спинного мозга.И тот, и другой одинаково хорошо защищены от травмирующих внешних воздействий костными структурами — спинной мозг заключён внутри позвоночного столба, а головной располагается в полости черепа.Такое строение организма позволяет предотвратить повреждения чувствительных клеток мозгового вещества при малейшем воздействии.

Периферическая нервная система отходит от позвоночного столба к различным органам и тканям.Она представлена 12 парами черепных и 31 парой спинномозговых нервов, по которым различные импульсы молниеносно передаются от мозга к тканям, стимулируя или, наоборот, подавляя их работу в зависимости от различных факторов и конкретной ситуации.

Соматическая и вегетативная нервные системы

Соматический отдел служит связующим элементом между окружающей средой и организмом.Именно благодаря этим нервным волокнам человек в состоянии не только воспринимать окружающую действительность (например, «огонь горячий»), но и адекватно на неё реагировать («значит, надо убрать руку, чтобы не получить ожог»).Такой механизм позволяет защитить тело от немотивированного риска, подстроиться под окружающую обстановку и правильно проанализировать информацию.

Вегетативная система более автономна, поэтому медленнее реагирует на влияние извне.Она регулирует деятельность внутренних органов — желёз, сердечно-сосудистой, пищеварительной и других систем, а также поддерживает оптимальный баланс во внутренней среде человеческого тела.

Анатомия внутренних органов лимфатической системы

Лимфатическая сеть хоть и менее обширна, чем кровеносная, но не менее значима для поддержания здоровья человека.К ней относятся разветвлённые сосуды и лимфатические узлы, по которым движется биологически значимая жидкость — лимфа, находящаяся в тканях и органах.Ещё одним отличием лимфатической сети от кровеносной является её незамкнутость — сосуды, несущие лимфу, не смыкаются в кольцо, оканчиваясь непосредственно в тканях, откуда всасывают лишнюю жидкость и впоследствии переносят к венозному руслу.

В лимфатических узлах происходит дополнительная фильтрация, позволяющая очистить лимфу от молекул вирусов, бактерий и токсинов.По их реакции медики обычно и узнают, что в организме начался воспалительный процесс, — места локализации лимфоузлов становятся отёчными и болезненными, а сами узелки заметно увеличиваются в размерах.

Основная сфера деятельности лимфатической системы заключается в следующем:

  • транспорт липидов, всосавшихся с пищей, в кровяное русло;
  • поддержание сбалансированного объёма и состава биологических жидкостей организма;
  • эвакуация скопившихся излишков воды в тканях (например, при отёках);
  • защитная функция тканей лимфоузлов, в которой вырабатываются антитела;
  • фильтрация молекул вирусов, бактерий и токсинов.

Роль иммунитета в анатомии человека

На иммунной системе лежит ответственность за поддержание здоровья организма при любом внешнем воздействии, особенно вирусной или бактериальной природы.Анатомия тела продумана таким образом, чтобы болезнетворные микроорганизмы, попадая внутрь, максимально быстро встречались с органами иммунитета, которые, в свою очередь, должны не только распознать происхождение «незваного гостя», но и правильно отреагировать на его появление, подключив остальные резервы.

Классификация органов иммунитета включает центральную и периферическую группы.К первой относятся костный мозг и тимус.Костный мозг представлен губчатой тканью, которая способна синтезировать клетки крови, в том числе лейкоциты, отвечающие за уничтожение чужеродных микробов.А тимус, или вилочковая железа, является местом для размножения лимфатических клеток.

Периферические органы, отвечающие за иммунитет, более многочисленны.К ним относятся:

  • Лимфатические узлы — место фильтрации и распознавания патологических микроэлементов, проникших в организм.
  • Селезёнка — многофункциональный орган, в котором осуществляется депонирование элементов крови, её фильтрация и производство лимфатических клеток.
  • Участки лимфоидной ткани в органах — место, где «работают» антигены, вступая в реакцию с болезнетворными микроорганизмами и подавляя их.

Благодаря работоспособности иммунитета организм может справляться с вирусными, бактериальными и другими заболеваниями, не обращаясь за помощью к медикаментозной терапии.Крепкий иммунитет позволяет противостоять чужеродным микроорганизмам на начальном этапе, предотвращая тем самым возникновение болезни или как минимум обеспечивая её лёгкое течение.

Анатомия органов чувств

Органы, отвечающие за оценку и восприятие реалий внешней среды, относятся к органам чувств: зрения, осязания, обоняния, слуха и вкуса.Именно через них к нервным окончаниям поступает информация, которая молниеносно обрабатывается и позволяет правильно реагировать на обстановку.К примеру, осязание позволяет воспринять информацию, поступающую через рецепторное поле кожи: на ласковые поглаживания, лёгкий массаж кожа мгновенно реагирует едва ощутимым повышением температуры, которое обеспечивается благодаря притоку крови, тогда как при болезненных ощущениях (например, при термическом воздействии или повреждении тканей), ощущаемых на поверхности дермальных тканей, организм мгновенно реагирует сужением кровеносных сосудов и замедлением кровотока, который обеспечивает защиту от более глубоких повреждений.

Зрение, слух и другие органы чувств позволяют не только физиологически реагировать на изменения во внешней среде, но и испытывать различные эмоции.Например, видя прекрасную картину или слушая классическую музыку, нервная система посылает организму сигналы к расслаблению, умиротворению, благодушию; чужая боль, как правило, вызывает сострадание; а неприятные новости — грусть и озабоченность.

Мочеполовая система в анатомии тела человека

В некоторых научных источниках мочеполовую систему рассматривают как 2 составляющие: мочевыделительную и репродуктивную, однако, из-за тесной взаимосвязи и смежного расположения их всё же принято объединять.Строение и функции этих органов сильно разнятся в зависимости от половой принадлежности, поскольку на них возложен один из самых сложных и загадочных процессов взаимодействия полов — репродукция.

И у женщин, и у мужчин мочевыделительная группа представлена следующими органами:

  • Почки — парные органы, которые выводят из организма излишек воды и токсичные вещества, а также регулируют объём крови и других биологических жидкостей.
  • Мочевой пузырь — полость, состоящая из мышечных волокон, в которой накапливается моча до момента её выведения.
  • Уретра, или мочеиспускательный канал — путь, по которому моча эвакуируется из пузыря после его наполнения.У мужчин он составляет 22–24 см, а у женщин — всего 8.

Репродуктивная составляющая мочеполовой системы сильно разнится в зависимости от пола.Так, у мужчин она включает яички с придатками, семенные железы, простату, мошонку и пенис, которые в комплексе отвечают за формирование и эвакуацию семенной жидкости.Женская половая система устроена более сложно, поскольку именно на представительниц прекрасного пола ложится ответственность за вынашивание ребёнка.К ней относятся матка и маточные трубы, пара яичников с придатками, влагалище и наружные половые органы — клитор и 2 пары половых губ.

Анатомия органов эндокринной системы

Под эндокринными органами подразумевают комплекс различных желёз, которые синтезируют в организме специальные вещества — гормоны, отвечающие за рост, развитие и полноценное протекание многих биологических процессов.К эндокринной группе органов относятся:

  1. Гипофиз — небольшая «горошина» в головном мозге, которая вырабатывает около десятка разнообразных гормонов и регулирует рост и размножение организма, отвечает за поддержание метаболизма, артериального давления и мочеиспускания.
  2. Щитовидная железа, расположенная в области шеи, контролирует деятельность обменных процессов, отвечает за сбалансированный рост, интеллектуальное и физическое развитие личности.
  3. Паращитовидная железа — регулятор усвоения кальция и фосфора.
  4. Надпочечники вырабатывают адреналин и норадреналин, которые не только контролируют поведение в стрессовой ситуации, но и влияют на сердечные сокращения и состояние сосудов.
  5. Яичники и яички — исключительно половые железы, которые синтезируют гормоны, необходимые для нормальной половой функции.

Любое, даже самое минимальное, повреждение эндокринных желёз может стать причиной серьёзного гормонального дисбаланса, который, в свою очередь, приведёт к сбоям в работе организма в целом.Именно поэтому исследование крови на уровень гормонов является одним из базовых исследований в диагностике различных патологий, особенно связанных с репродуктивной функцией и всевозможными нарушениями развития.

Функция дыхания в анатомии человека

Система дыхания человека отвечает за насыщение организма молекулами кислорода, а также выведение отработанного углекислого газа и токсических соединений.По сути, это последовательно соединённые между собой трубки и полости, которые сначала заполняются вдыхаемым воздухом, а потом изгоняют изнутри углекислый газ.

Верхние дыхательные пути представлены носовой полостью, носоглоткой и гортанью.Там воздух согревается до комфортной температуры, позволяя предотвратить переохлаждение нижних отделов дыхательного комплекса.Кроме того, слизь носа увлажняет слишком сухие потоки и обволакивает плотные мельчайшие частички, которые могут травмировать чувствительную слизистую.

Нижние дыхательные пути начинаются гортанью, в которой не только осуществляется функция дыхания, но и формируется голос.При колебании голосовых связок гортани возникает звуковая волна, однако трансформируется в членораздельную речь она только в ротовой полости, с помощью языка, губ и мягкого нёба.

Далее воздушный поток проникает в трахею — трубку из двух десятков хрящевых полуколец, которая прилегает к пищеводу и впоследствии распадается на 2 отдельных бронха.Затем бронхи, впадающие в ткани лёгких, ветвятся на меньшие по размеру бронхиолы и т.д., вплоть до образования бронхиального дерева.Сама же лёгочная ткань, состоящая из альвеол, отвечает за газообмен — всасывание кислорода из бронхов и последующую отдачу углекислоты.

Послесловие

Организм человека представляет собой сложную и уникальную в своем роде структуру, которая способна самостоятельно регулировать свою работу, реагируя на малейшие изменения окружающей среды.Базовые знания анатомии человека обязательно пригодятся каждому, кто стремится сохранить свой организм, поскольку нормальная работа всех органов и систем является основой здоровья, долголетия и полноценной жизни.Понимая, как происходит тот или иной процесс, от чего он зависит и чем регулируется, вы сможете вовремя заподозрить, выявить и скорректировать возникшую проблему, не пуская её на самотёк!

Рейтинг автора
Автор статьи
Влада Кожевина
Психолог
Написано статей
789
Предыдущая статьяУпражнения для упругости ягодиц
Следующая статьяМассаж на позвоночник

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here